Sign in
Up by karmicmind

Geometri

Trekanter

drawing( 320, 240, 0, 10, 0, 10,
  triangle(1,1, 9,1, 9,9),
  locate(0.8,1, A),
  locate(9,10, B),
  locate(9,1, C),
  locate(9.1,5.1, a),
  locate(4.9,1, b),
  locate(4.5,5.5, c)
)

For alle trekanter gælder:

\[c^2 = a^2 +b^2 -2ab \cdot cos(C)\]

\[\frac{ a }{ sin(A) } = \frac{ b }{ sin(B) } = \frac{ c }{ sin(C) }\]

For retviklede trekanter gælder:

\[c^2 = a^2 +b^2\]

\[sin(V) = \frac{ mod }{ hyp }\]

\[cos(V) = \frac{ hos }{ hyp }\]

\[tan(V) = \frac{ mod }{ hos }\]


Bevis

Figur 1
4*(ab/2) +a^2 +b^2 = (a+b)^2 = 4*(ab/2) +c^2
4*(ab/2) +a^2 +b^2 = cross((a+b)^2) = 4*(ab/2) +c^2
4*(ab/2) +a^2 +b^2 = 4*(ab/2) +c^2
cross(4*(ab/2)) +a^2 +b^2 = cross(4*(ab/2)) +c^2
+a^2 +b^2 = +c^2

Bevis

drawing( 640, 240, 0, 20, 0, 10,
  triangle(1,1, 6,1, 6,6),
  locate(0.8,1, A),
  locate(6,7, B),
  locate(6,1, C),
  locate(6.1,4.1, sin(A)),
  locate(2.9,1, cos(A)),
  locate(2.5,3.5, 1),
  triangle(11,1, 19,1, 19,9),
  locate(10.8,1, A),
  locate(19,10, B),
  locate(19,1, C),
  locate(19.1,5.1, a),
  locate(14.9,1, b),
  locate(14.5,5.5, c)
)

k = c/1 = c

c*sin(A) = a
sin(A) = a/c

c*cos(A) = b
cos(A) = b/c

Bevis

Definition: tan(A) = sin(A)/cos(A)

tan(A) = sin(A)/cos(A) = (a/c)/(b/c) = (a/c)*(c/b) = (a*cross(c))/(cross(c)*b) = a/b
tan(A) = a/b

Bevis

drawing( 640, 240, 0, 20, 0, 10,
  triangle(1,1, 14,1, 9,9),
  triangle(1,1, 9,1, 9,9),
  locate(0.8,1, A),
  locate(9,10, B),
  locate(14,1, C),
  locate(9,1, D),
  locate(12.1,5.1, a),
  locate(9.1,5.1, h),
  locate(4.9,1, b-x),
  locate(10.9,1, x),
  locate(4.5,5.5, c)
)

cos(C) = x/a <=> a*cos(C) = x

h^2 +x^2 = a^2 <=> h^2 = a^2 -x^2
h^2 +(b-x)^2 = c^2 <=> h^2 = c^2 -(b-x)^2
c^2 -(b-x)^2 = h^2 = a^2 -x^2

c^2 -(b-x)^2 = a^2 -x^2
c^2 = a^2 -x^2 +(b-x)^2
c^2 = a^2 -x^2 +(b-x)*(b-x)
c^2 = a^2 -x^2 +b^2 +x^2 -2bx
c^2 = a^2 +b^2 -2bx
c^2 = a^2 +b^2 -2b * a*cos(C)
c^2 = a^2 +b^2 -2ab*cos(C)

Beviser for Pythagoras